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Preface to the English Edition

IN 1966, when the first (Russian) edition of this book was published, two
other books on the same subject [50, 87] appeared.

The book by Eden efal. [50] represents a physicist survey of the
analytic properties of the S-matrix. It contains the main physical ideas and
results, but does not give much attention to mathematical proofs and
detailed calculations.

The book by Hwa and Teplitz [87], on the other hand, introduces the
reader to the more mathematically oriented work of recent years, which
uses such modern methods as algebraic topology and homology theory.
(It includes a number of reprints on the subject.) Work in this direction
has multiplied in recent years (see in particular refs. [63,108,164-5,167-8])

The present book is in an intermediate position between the two. Its
methods are elementary and do not touch on the applications of homology
theory, but in contrast to [50] it treats the problems in considerable
detail.

Most of the book is devoted to a self-contained exposition of the
majorization method in the study of the analytic properties of Feynman
graphs; this is applied to the derivation of single variable dispersion rela-
tions. A special chapter (4) deals with the study of the singularity surface
of an arbitrary diagram. A number of examples for which the Landau
curves can be found explicitly are treated in detail. A new section is added
to the English edition in this chapter; it illustrates the Cutkosky rules and
the Mandelstam representation with the example of a fourth-order dia-
gram. The derivation of fixed angle dispersion relations for the pion-
nucleon scattering amplitude in Chapter 3 of the first edition was compli-
cated and incomplete,so it has been eliminated in the present edition. Also,
a number of minor corrections has been added throughout and the list of
references has been extended.
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Preface to the English Edition

I would like to thank Dr. Clifford Risk for taking both the initiative and
the laborious job of the English translation. He contributed ta the elimina-
tion of some errors ofthe originaland added anumber of clarifyingremarks.
I am very grateful to Professor Stapp for his critical remarks which helped
improve the final version of the translation. The work on the English
edition was done during my stay at the Institute for Advanced Study in
Princeton, where I enjoyed the hospitality of Professor C.Kaysen and of
the Faculty of Natural Sciences. It is also a pleasure to thank Professor
T.Regge for his kind interest in the work.

Princeton, February 1970 I.Toporov
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Translator’s Note

DuRING the last four years several books have appeared summarizing
various areas in which the study of analytic properties of the scattering
amplitude A4 (s, #) has been developed. The book by Eden et al. [50]
(chapters 1, 2) develops the analytic properties in s and ¢ as obtained in
perturbation theory; this is motivated by the Mandelstam double disper-
sion conjecture. The book by Hwa and Teplitz [87] summarizes how the
techniques used in [50] can be put on a rigorous foundation through
homology theory. About a decade ago the analytic properties of A4 (s, )
were studied from the general framework of quantum field theory, and
single variable dispersion relations were proven (see Bogoliubov and
Shirkov [14] and also the summary in Dispersion Relations, G.R. Screaton,
Oliver & Boyd, London, 1960); recently, Martin [125] explored the unitar-
ity condition in field theory, and in particular obtained a larger domain of
analyticity of the scattering amplitude. The book by R.J.Eden, High
Energy Collisions of Elementary Particles, Cambridge University Press,
1967, summarizes the phenomenological applications of all of these re-
sults.

However, there has remained a need for a book that summarizes the
analytic properties obtained from perturbation theory by the majorization
technique and the Symanzik theorem. The present work fulfills this need.
Starting with an integral representation for a Feynman amplitude (Chap-
ter 1), diagrams are found for individual processes which have the smallest
domains of analyticity. The number of these (majorizing) diagrams is
reduced with the Symanzik theorem (Chapter 2), their analytic properties
are studied, and eventually one can derive dispersion relations for the
amplitudes of a large number of processes (Chapter 3). In Chapter 4 the
proper singularities of several diagrams are studied, and the Cutkosky
rules formulated. The book contains some new material ; the reader will be

xiii



Translator's Note

surprised to learn of the existence of a pole in the box diagram amplitude
on the physical sheet.

Undertaking the translation was first suggested to me by Dr. David
Olive, and further encouraged by Professor R.J. Eden and Professor Marc
Ross. During the final stages of the translation, we were fortunate to have
Professor Henry Stapp read through the manuscript and suggest many
improvements and revisions, for which we are very grateful. We express
our thanks to Pergamon Press for their patience and assistance during the
long period of preparation of the text.

The translation was supported in part by funds provided by the A.E.C.
I am grateful to Professor Marc Ross for the hospitality of the Physics
Department at the University of Michigan, and to Professor G. Chew for
the hospitality of the Lawrence Radiation Laboratory as an A.E.C.
Fellow.

Berkeley, California
April 1970
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Foreword

THE present book deals with a comparatively new branch of quantum field
theory.

The systematic study of the analytic properties of the matrix elements of
perturbation theory began with the work of Nambu and Symanzik in
1957-8. In the following years this problem occupied the attention of
elementary particle physicists and became the subject of many investiga-
tions.

As has often happened in recent years, new problems and fads at-
tracted theoreticians before the ultimate question of whether the Mandel-
stam representation is valid to any order of perturbation theory had been
answered.

Lately there has been a relative quiet in the development of the area. It
seems a proper time to summarize the basic results that were obtained
during five years of intensive work.

This monograph is a revised and completed version of an earlier work
by the author [189], which was published as a preprint by the Joint Insti-
tute for Nuclear Research in Dubna. Naturally, theselection of materialhas
reflected the interests of the author and his participation in the study of the
problems covered in the book. In any event, the book does not pretend to
be an exhaustive survey of all work in the area.

The book is primarily directed toward readers familiar with the funda-
mentals of quantum field theory as presented, for example, in the first four
chapters of the book by Bogoliubov and Shirkov [14]. However, all the
basic concepts that we will be dealing with in the systematic presentation
which begins in Chapter 1 are defined in the text. Therefore, the author
hopes that the book will be also accessible to mathematicians interested in
mathematical problems of modern physics.

The author’s interest in the problems considered in this book arose
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Foreword

during joint work with Professor A.A.Logunov and Dr. H. A. Cherni-
kov. In some stages of the work occupying the central part of the book
LiuYi-Chen, M. A. Mestvirishviliand A. N. Tavkhelidze also participated.
The results were repeatedly discussed with Professors N. N.Bogoliubov,
V.S.Vladimirov, and O.S.Parasiuk. The author has benefited from help-
ful discussions with Professor M. G.Krein. To all of them I express my
deep gratitude.

Sofia, October 1965 THE AUTHOR
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Introduction

1. Dispersion relations and perturbation theory

The fundamental quantity in the study of particle interactions in quan-
tum field theory is the scattering matrix S. The square moduli of its ele-
ments

S(pls cesDisqis e, qj) = S(pls ceosPis —q15-00) '_qj)

give the probability of transition from the state of i free particles and
momenta p,, ..., p; at time ¢ - — oo to the state of j free particles with
momenta ¢y, ..., g; at time ¢t - + co.

In perturbation theory the S-matrix elements are expanded in a power
series in the coupling constant g

S(pls---spN)= Zognsn(pls--wplv)* (1)

Inelectrodynamics, g% = 1/137, and the expansion has proven to be of prac-
tical use. However, for strong interactions g ~ 15, and, aswe might have
expected, the first few terms of (1) do not fit experiment at all.

In the last decade much progress has been made in studying strong
interactions by using the dispersion relation techniques. The basic idea is
to investigate the analytic properties of the S-matrix elements for complex
values of momenta. Such an investigation was first carried out starting
from the general principles of quantum field theory: micro-causality,
relativistic invariance of the Lorentz group, and the existence of a com-
plete system of physical states with positive energy (the spectral property).
An essential feature of these postulates is that they define a linear space of
functions; we will call them the “linear postulates. As a rule, unitarity,
which is a non-linear property, is not used in deriving the analytic proper-

1



Introduction

ties of S-matrix elements.* On the basis of the linear properties, Bogoliu-
bov et al. [14, 16] derived dispersion relations in the energy variable for
physical values of the momentum transfer in the physically important
case of pion—nucleon scattering. Later onit became clear that Bogoliubov’s
method is quite general and can be applied in principle to all processes
involving two incident and two outgoing particles [17, 146, 176, 187, 191].
Meanwhile, at one essential stage in the proof—the analytic continuation
of the absorptive part of the amplitude—the methods of the theory of
functions of several complex variables [22, 191, 193-4] and the Dyson re-
presentation of the causal commutator [47, 193-4] were used to strengthen
the original result for #—N scattering. Lehmann [109] showed that the
ni—N scattering amplitude is analytic in a certain ellipse in the complex
plane of momentum transfer 4> = (—¢[4). By an analogous method the
analytic properties of the vacuum expectation value of the product of
three local fields were analyzed [93] and an integral representation was
found for this matrix element [94].1

However, shortly after all these successes, limitations of the general
method were observed. It was shown [22] that using only causality and the
spectral property and without involving the symmetry properties, disper-
sion relations could be derived for the N-N scattering amplitude only for
masses of the pi un (m) and nucleon (M) which satisfy

m> 2 —-1)M. ©)

This relation is not valid for the experimental masses. At the moment it
is not clear if the symmetry conditions allow further analytic continuation
of the amplitude. However, Jost [91] constructed an example for the
meson—-nucleon vertex function in which he used all the linear properties,

* Cf., however, [4, 106, 107, 124], where the first steps in such a use of the unitarity
condition were made. In [162] the consequences of the unitary condition are studied in
combination with a certain “principle of maximal analyticity”, which does not seem to
have a clear mathematical formulation. Significant progress in this direction is achieved
in the recent work of Martin [125].

T A systematic survey of work on the analytic properties of quantum amplitudes
(based on the general linear postulates) is given in [17]. (There is also a bibliography in
this reference.)
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Introduction

including the symmetry requirement. In this example it was clear that
these postulates do not guarantee the validity of dispersion relations
when

this relationis satisfied by the experimental values of the pion and nucleon
masses.

The only method that has been developed up to now which systematic-
ally uses the non-linear property of unitarity of the S-matrix (along with
other postulates) is the perturbation theory. This “theory” is incomplete
in many ways: the coefficients S, of the formal series (1) are sums of
multiple integrals, most of which diverge. After “renormalization” of the
divergent integrals, which leads to finite values of S, it is still doubtful if
the series (1) itself converges. Finally, for strong interactions where
g > 1, thereislittle hope in the practical use of an expansion in powers of
g even if the series (1) asymptotically converges. All this led in the mid-
1950’s to the (precipitate) conclusion that the perturbation expansion is of
no use whatsoever as far as strong interactions are concerned.

The difficulties that arose from the study of the analytic properties of
matrix elements led physicists to look at the perturbation theory series
from a new point of view. It was shown that the individual terms of the
series have analytic properties consistent with the general principles, their
singularities having a simple interpretation. Moreover, by studying the
analytic properties of individual Feynman diagrams the origin of inequali-
ties like eq. (2) that occur in the general approach was understood [96]
(see section 1 of Chapter 3). On the basis of the analysis of the analytic
properties of simple scattering diagrams, Mandelstam [122] advanced his
famous hypothesis about the double spectral representation of the scatter-
ing amplitude. (It is a generalization of a representation postulated by
Nambu [143], which had been shown to be violated in perturbation
theory.) The question then arose of finding a domain Gin which every term
of the perturbation series for the scattering amplitude would be analytic.
Of course, to prove analyticity of the whole amplitude in the domain G one

3



Introduction

ought to show that the series converges uniformlyin this region.* However,
in numerous articles that dealt with the study of analytic properties of the
amplitudes in perturbation theory, the question of convergence of the
power series in g was not touched on at all. In other papers that were
specifically devoted to this question various unproven assertions were
stated. In [64, 130] field theory models were considered which had series
expansion in powers of charge with a finite radius of convergence.}

Confidence in the perturbation method was also partly restored by the
work on the renormalization of individual terms in the series [15, 23, 26,
27, 69, 85, 86, 88, 149, 179-80, 198, 206]; in these articles a precise mathe-
matical meaning was given to the procedure of removing the divergences.

Finally, we mention the study of the asymptotic behavior of Feynman
graphs for high energy begun in 1962 [4, 51-3, 56, 75, 76,163, 186, 205-6].
Recently, methods of summing diagrams in the high-energy limit (includ-
ing all “crossed ladders”) were developed and led to the so-called eikonal
approximation, which appears to be of particular use in quantum electro-
dynamics (see, for example, [1, 6, 24, 28-33, 111]). These results, just like
the results of the study of analytic properties in perturbation theory, are
certainly not rigorous and complete (since the contribution from the re-
maining diagrams is not estimated). However, taken together all these
arguments reinforce the confidence of physicists that the perturbation
theory series does contain useful information about strong interactions
also.

2. A survey of work on the analytic properties of S-matrix
elements in perturbation theory

It is difficult to sort out the many articles that have been written on the
analytic properties of Feynman diagrams. Not only is there alarge number

* According to a well-known theorem of Vitali (see any textbook on the theory of
analytic functions) to do this it is sufficient to show that there is a uniform bound of the
partial sums of the series inside of the region G and that the series has an ordinary
convergence in some subset £ — G which contains at least one limit point in G.

+ In [130] there are also references to the previous works, which contain arguments
for convergence (or divergence) of the perturbation theory series. More recently the
problem was studied in [7, 178].
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Introduction

of articles on the subject (the number has especially grown since 1959), but,
furthermore, the different publications have no common mathematical
standard. Many articles that sometimes claim a very strong result in
reality contain only vague, unproven assertions and frequently outright
mistakes. Naturally, this survey of the principal directions of work in the
area does not purport to give a critical analysis of all the literature on the
subject.

We divide the works on the study of analytic properties of the matrix
elements of perturbation theory into two groups.

In the first group we put articles that examine the simplest lower order
diagrams of a given process. Strictly speaking, this type of investigation
can produce only a negative result; namely, it can only show that a given
hypothesis is not true in the lowest orders of perturbation theory. However,
these studies of specific examples do elucidate a number of characteristic
features in the analytic behavior of Feynman integrals and provide a basis
for developing general methods of studying analytic properties of dia-
grams. As an example of the pioneer role they performed we mention the
work of Karplus ez al. [96, 97]. They investigated the simplest, non-trivial
diagrams for the vertex part and the scattering amplitude. The important
concept of an anomalous threshold* was introduced and a graphical
method was given for finding the proper singularities of a given diagram
by means of constructing the so-called dual diagram. The method of dual
diagrams was developed and systematically used in [104, 148, 183]. A series
of examples of locating the real singularities of more complicated dia-
grams was examined in [100-1, 118, 148, 152, 172]. In [104, 173] the ques-
tion of the nature of these singularities was discussed. In the majority of
these articles the simplifying assumption is made that all particles are
scalar. (This does not affect the location of the singularities—compare,
for example, [139] or Chapter 1, section 1.3 of this book.) Anexample ofa
diagram for nucleon—nucleon scattering in which the spinor structure of
the nucleon propagatoris taken into account is considered in detailin [77].

Itis considerably more complicated to find the complex singularities of

* Nambu [145] and Oehme [147] arrived at this concept independently. Anomalous
thresholds and their physical meaning were discussed later in [11, 12, 43]. For the defini-~
tions of normal and anomalous threshold see Chapter 3, section 1.4.
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